

Institute for Interlaboratory Studies

Results of Proficiency Test Specific Migration on Food Contact Materials October 2023



Report: iis23E82SM

December 2023

## CONTENTS

| 1   | INTRODUCTION                                                     | 3  |
|-----|------------------------------------------------------------------|----|
| 2   | SET UP                                                           | 3  |
| 2.1 | ACCREDITATION                                                    | 3  |
| 2.2 | PROTOCOL                                                         | 3  |
| 2.3 | CONFIDENTIALITY STATEMENT                                        | 4  |
| 2.4 | SAMPLES                                                          | 4  |
| 2.5 | ANALYZES                                                         | 5  |
| 3   | RESULTS                                                          | 6  |
| 3.1 | STATISTICS                                                       | 6  |
| 3.2 | GRAPHICS                                                         | 7  |
| 3.3 | Z-SCORES                                                         | 8  |
| 4   | EVALUATION                                                       | 8  |
| 4.1 | EVALUATION PER SAMPLE AND PER COMPONENT                          | 9  |
| 4.2 | PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES             | 10 |
| 4.3 | COMPARISON OF PROFICIENCY TEST OF OCTOBER 2023 WITH PREVIOUS PTS | 10 |
| 4.4 | EVALUATION OF THE ANALYTICAL DETAILS                             | 11 |
| 5   | DISCUSSION                                                       | 12 |
| 6   | CONCLUSION                                                       | 13 |

## Appendices:

| 1. | Data, statistical and graphic results         | 14 |
|----|-----------------------------------------------|----|
| 2. | Other reported test results                   | 19 |
| 3. | Details on reported intermediate test results | 21 |
| 4. | Analytical details                            | 26 |
| 5. | Number of participants per country            | 28 |
| 6. | Abbreviations and literature                  | 29 |
|    |                                               |    |

### 1 INTRODUCTION

During the contact of materials with food, molecules can migrate from the food contact material to the food. Because of this, in many countries regulations are made to ensure food safety. The framework Regulation (EU) No. 10/2011 (lit. 13 and lit. 14) applies to all food contact materials and describes a large number of requirements, e.g. limits for Overall Migration and Specific Migration limits for certain constituents. The EU10/2011 regulation was amended regarding Metals in September 2020 with EU 2020/1245 (lit. 15) and was amended regarding Phthalates in July 2023 with EU 2023/1442 (lit 16).

Since 2012 the Institute of Interlaboratory Studies (iis) organizes a proficiency scheme for the determination of Specific Migration on Food Contact Materials every year. During the annual proficiency testing program of 2023 it was decided to continue the proficiency test for the determination of Specific Migration on Food Contact Materials.

In this interlaboratory study 32 laboratories in 17 countries registered for participation, see appendix 5 for the number of participants per country. In this report the results of the Specific Migration proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

### 2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to a laboratory that has performed the tests in accordance with for ISO/IEC17043 relevant requirements of ISO/IEC17025.

It was decided to send two different samples. The first sample was a pink polypropylene cup labelled #23720 for the determination of migratable phthalates. The second sample was a black polycarbonate plate labelled #23721 for the determination of migratable metals. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

### 2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

### 2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

### 2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

## 2.4 SAMPLES

For the first sample a batch of pink polypropylene cups containing a detectable level of some Phthalates was prepared by a third party. The subsamples were labelled #23720. The homogeneity of the subsamples was checked by determination of the Specific Migration of DEHP (Bis-2-ethylhexylphthalate) and DAP (Diallylphthalate) using an in house test method on 8 stratified randomly selected subsamples. Migration conditions: article filling, 50% M/V Ethanol, 1 hour at 70 °C.

|                 | DEHP<br>in mg/dm <sup>2</sup> | DAP<br>in mg/dm <sup>2</sup> |
|-----------------|-------------------------------|------------------------------|
| sample #23720-1 | 0.2120                        | 0.2338                       |
| sample #23720-2 | 0.2171                        | 0.2374                       |
| sample #23720-3 | 0.2026                        | 0.2403                       |
| sample #23720-4 | 0.1931                        | 0.2171                       |
| sample #23720-5 | 0.2055                        | 0.2193                       |
| sample #23720-6 | 0.2077                        | 0.2127                       |
| sample #23720-7 | 0.2156                        | 0.2360                       |
| sample #23720-8 | 0.1989                        | 0.2244                       |

Table 1: homogeneity test results of subsamples #23720

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding estimated reproducibility calculated with the Horwitz equation in agreement with the procedure of ISO13528, Annex B2 in the next table.

|                            | DEHP<br>in mg/dm <sup>2</sup> | DAP<br>in mg/dm <sup>2</sup> |
|----------------------------|-------------------------------|------------------------------|
| r (observed)               | 0.0232                        | 0.0295                       |
| reference method           | Horwitz                       | Horwitz                      |
| 0.3 x R (reference method) | 0.0352                        | 0.0382                       |

Table 2: evaluation of the repeatabilities of subsamples #23720

The calculated repeatabilities are in agreement with 0.3 times the corresponding estimated reproducibility calculated with the Horwitz equation. Therefore, homogeneity of the subsamples was assumed.

For the second sample a batch of black polycarbonate plates containing a detectable level of some Metals was prepared by a third party. The subsamples were labelled #23721. The homogeneity of the subsamples was checked by determination of the Specific Migration of Barium and Cobalt using an in house test method on 10 stratified randomly selected subsamples. Migration conditions: total immersion, 50% M/V Acetic Acid, 2 hours at 100 °C.

|                  | Barium<br>in mg/dm² | Cobalt<br>in mg/dm² |
|------------------|---------------------|---------------------|
| sample #23721-1  | 0.2367              | 0.1125              |
| sample #23721-2  | 0.2557              | 0.1245              |
| sample #23721-3  | 0.2383              | 0.1066              |
| sample #23721-4  | 0.2430              | 0.1131              |
| sample #23721-5  | 0.2436              | 0.1151              |
| sample #23721-6  | 0.2607              | 0.1153              |
| sample #23721-7  | 0.2386              | 0.1076              |
| sample #23721-8  | 0.2600              | 0.1233              |
| sample #23721-9  | 0.2627              | 0.1253              |
| sample #23721-10 | 0.2394              | 0.1147              |

Table 3: homogeneity test results of subsamples #23721

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding estimated reproducibility calculated with the Horwitz equation in agreement with the procedure of ISO13528, Annex B2 in the next table.

|                            | Barium<br>in mg/dm² | Cobalt<br>in mg/dm² |
|----------------------------|---------------------|---------------------|
| r (observed)               | 0.0296              | 0.0186              |
| reference method           | Horwitz             | Horwitz             |
| 0.3 x R (reference method) | 0.0411              | 0.0215              |

Table 4: evaluation of the repeatabilities of subsamples #23721

The calculated repeatabilities are in agreement with 0.3 times the corresponding estimated reproducibility calculated with the Horwitz equation. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one cup labelled #23720 and one plate labelled #23721 were sent on September 6, 2023.

### 2.5 ANALYZES

The participants were requested to determine on sample #23720: 16 different Phthalates (BBP, DEHP, DBP, DIDP, DINP, DNOP, DCHP, DEP, DMP, DNHP, DIBP, DPHP, DNPP, DUP, DPRP and DAP) using the prescribed test conditions (article filling, single use, 1 hour at 70 °C and 50% M/V Ethanol as simulant).

For sample #23721 it was requested to determine: 9 different Metals (Aluminum as Al, Barium as Ba, Cobalt as Co, Copper as Cu, Iron as Fe, Lithium as Li, Manganese as Mn,

Nickel as Ni and Zinc as Zn) using the prescribed conditions (total immersion, single use, 2 hours at 100 °C and 3% M/V Acetic Acid as simulant).

It was also requested to report for both samples if the laboratory was accredited for the determined component and to report some analytical details.

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the test results but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

### 3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The reported test results are tabulated per determination in appendices 1 and 2 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the result tables in appendices 1 and 2. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

## 3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT the criterion of ISO13528, paragraph 9.2.1, was met for all evaluated tests. Therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

## 3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation.

## 3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements (derived from e.g. ISO or ASTM test methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former iis proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z_{(target)} = (test result - average of PT) / target standard deviation
```

The  $z_{(target)}$  scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

|     | z | < 1 | good           |
|-----|---|-----|----------------|
| 1 < | z | < 2 | satisfactory   |
| 2 < | z | < 3 | questionable   |
| 3 < | z |     | unsatisfactory |

## 4 EVALUATION

In this proficiency test no problems were encountered with the dispatch of the samples. Three participants reported test results after the final reporting date and two other participants did not report any test results. Not all participants were able to report all tests requested.

In total 30 participants reported 106 numerical test results for Specific Migration per contact surface. Observed were 10 outlying test results, which is 9.4%. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

### 4.1 EVALUATION PER SAMPLE AND PER COMPONENT

In this section the reported test results are discussed per sample and per component. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 6.

In the past iis has observed that for the Overall and Specific Migration methods, limits and calculations are mixed up and used inappropriately by participants. Therefore, iis issued a White Paper on this subject in February 2018 (see lit. 17) to help participants understand the differences between the two methods, the units used for reporting and the regulated limits.

For the determination of Specific Migration, several test methods exist. The most relevant test method is method EN13130 part 1. Method EN13130 part 1 describes how the Specific Migration test should be performed. Regretfully, no reference test method is available with precision requirements for the migration of Phthalates and Metals from food contact materials in mg/dm<sup>2</sup>. Therefore, it was decided to estimate the target reproducibilities calculated from the Horwitz equation. The reported test results of the Specific Migration per contact surface in mg/dm<sup>2</sup> were used for the statistical evaluation.

### sample #23720

- <u>DEHP</u>: The group of participants may have had difficulty to meet the target requirements. No statistical outliers were observed. The calculated reproducibility is not at all in agreement with the estimated reproducibility calculated with the Horwitz equation.
- <u>DAP</u>: The group of participants may have had difficulty to meet the target requirements. No statistical outliers were observed. The calculated reproducibility is not in agreement with the estimated reproducibility calculated with the Horwitz equation.

The majority of participants agreed on a concentration near or below the limit of detection for the other requested phthalates mentioned in paragraph 2.5. Therefore, no z-scores are calculated for these phthalates. The reported test results in mg/dm<sup>2</sup> are given in appendix 2.

### sample #23721

- <u>Aluminum</u>: The group of participants may have had difficulty to meet the target requirements. Three statistical outliers were observed and one other test result was excluded. The calculated reproducibility after rejection of the suspect data is not in agreement with the estimated reproducibility calculated with the Horwitz equation.
- Barium:The group of participants may have had difficulty to meet the target<br/>requirements. Three statistical outliers were observed. The calculated<br/>reproducibility after rejection of the statistical outliers is not in agreement<br/>with the estimated reproducibility calculated with the Horwitz equation.

<u>Cobalt</u>: The group of participants met the target requirements. Four statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the estimated reproducibility calculated with the Horwitz equation.

The majority of participants agreed on a concentration near or below the limit of detection for the other requested metals mentioned in paragraph 2.5. Therefore, no z-scores are calculated for these metals. The reported test results in mg/dm<sup>2</sup> are given in appendix 2.

### 4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 \* standard deviation) and the target reproducibility derived from reference methods are presented in the next tables.

| Component | unit               | n  | average | 2.8 * sd | R(target) |
|-----------|--------------------|----|---------|----------|-----------|
| DEHP      | mg/dm <sup>2</sup> | 21 | 0.185   | 0.373    | 0.107     |
| DAP       | mg/dm <sup>2</sup> | 13 | 0.254   | 0.334    | 0.140     |

 Table 5: reproducibilities of components on sample #23720

| Component | unit               | n  | average | 2.8 * sd | R(target) |
|-----------|--------------------|----|---------|----------|-----------|
| Aluminum  | mg/dm <sup>2</sup> | 14 | 0.018   | 0.018    | 0.015     |
| Barium    | mg/dm <sup>2</sup> | 24 | 0.224   | 0.167    | 0.126     |
| Cobalt    | mg/dm <sup>2</sup> | 23 | 0.095   | 0.065    | 0.061     |

Table 6: reproducibilities of components on sample #23721

Without further statistical calculations it can be concluded that for many components there is not a good compliance of the group of participants with the reference method. The problematic components have been discussed in paragraph 4.1.

### 4.3 COMPARISON OF PROFICIENCY TEST OF OCTOBER 2023 WITH PREVIOUS PTS

|                                    | October<br>2023 | October<br>2022 | October<br>2021 | October<br>2020 | September<br>2019 |
|------------------------------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| Number of reporting laboratories   | 30              | 35              | 19              | 24              | 18                |
| Number of test results             | 106             | 262             | 117             | 104             | 26                |
| Number of statistical outliers     | 10              | 23              | 6               | 11              | 3                 |
| Percentage of statistical outliers | 9.4%            | 8.8%            | 5.1%            | 10.6%           | 11.5%             |

Table 7: comparison with previous proficiency tests

In proficiency tests outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency test was compared to uncertainties observed in PTs over the years, expressed as relative standard deviation (RSD) of the PTs, see next table.

| Year | Components   | Type of<br>migration | Observed<br>RSD% | Target<br>RSD% | Concentration range mg/dm <sup>2</sup> |
|------|--------------|----------------------|------------------|----------------|----------------------------------------|
| 2012 | Formaldehyde | article filling      | 41 – 47          | 20 – 140       | 3 – 0.2                                |
| 2013 | Formaldehyde | article filling      | 41 – 61          | 14 – 20        | 3 – 0.2                                |
| 2014 | Bisphenol-A  | total immersion      | 44 – 52          | 14 – 20        | 3 – 0.2                                |
| 2015 | DEHP         | total immersion      | 34 – 40          | 14 – 20        | 3 – 0.2                                |
| 2016 | Metals       | total immersion      | 29 – 30          | 14 – 20        | 3 – 0.2                                |
| 2017 | Bisphenol-A  | article filling      | 33 – 50          | 20 – 33        | 0.2 - 0.009                            |
| 2018 | Metals       | article filling      | 21 – 35          | 17 – 38        | 0.6 – 0.003                            |
| 2019 | DEHP/DAP     | article filling      | 24 – 34          | 19 – 20        | 0.34 – 0.20                            |
| 2020 | Formaldehyde | article filling      | 28 – 51          | 17 – 19        | 0.62 - 0.32                            |
| 2020 | Metals       | article filling      | 17 – 20          | 19 – 20        | 0.32 – 0.22                            |
| 2021 | MDA          | article filling      | 70 – 84          | 41 – 82        | 0.008 - 0.004                          |
| 2021 | Metals       | total immersion      | 18 – 44          | 17 – 26        | 0.6 - 0.04                             |
| 2022 | Bisphenol A  | total immersion      | 16 – 22          | 18 – 20        | 0.43 – 0.22                            |
| 2022 | Metals       | article filling      | 19 – 29          | 21 – 26        | 0.19 – 0.04                            |
| 2023 | DEHP/DAP     | article filling      | 47 – 72          | 20 – 21        | 0.25 – 0.19                            |
| 2023 | Metals       | total immersion      | 24 – 37          | 20 – 29        | 0.22 - 0.018                           |

Table 8: development of the uncertainties over the years

The uncertainties observed in this PT are for Metals in line with the uncertainties observed in previous PTs. However, the uncertainties for DEHP/DAP are not in line.

### 4.4 EVALUATION OF THE ANALYTICAL DETAILS

Before the start of this PT it was clear that a wide range of test results would be reported when the choice of the test conditions would have been selected by the participating laboratories. Therefore, a set of prescribed test conditions (known to give a positive test result) was given together with the instructions to all participants:

| Sample code             | #23720                                               | #23721                                                    |  |
|-------------------------|------------------------------------------------------|-----------------------------------------------------------|--|
| Sample type             | pink polypropylene cup<br>containing some Phthalates | black polypropylene plate<br>containing some heavy Metals |  |
| Simulant                | 50% M/V Ethanol                                      | 3% M/V Acetic Acid                                        |  |
| Time of exposure        | 1 hour                                               | 2 hours                                                   |  |
| Temperature of exposure | 70 °C                                                | 100 °C                                                    |  |
| Method of migration     | Article filling, single use                          | Total immersion, single use                               |  |
| Volume of simulant      | as per method used                                   | as per method used                                        |  |

Table 9: prescribed test conditions in this PT

For both samples the participants were requested to report the Specific Migration in mg/dm<sup>2</sup> per contact surface as well as the intermediate test results (the final concentration in mg/L in simulant). Additional details regarding surface area, simulant volume and details about the evaporation step were also requested. See appendices 3 and 4.

For sample #23720 nine of the reporting participants mentioned that they are accredited for this test. Six of the reporting participants mentioned to have used test method EN13130-1 or EN13130, ten participants mentioned to have used an in house method.

Two participants reported to use water to clean the test item which is not in line with test method EN13130-1 paragraph 19.5.

Most of the participants used a surface area between  $1.3 \text{ dm}^2$  and  $1.9 \text{ dm}^2$ . Two participants used a surface area below  $1 \text{ dm}^2$  and one participant above  $2 \text{ dm}^2$ . Most of the participants used a volume of simulant between 200 mL and 250 mL. Three participants used a volume below 200 mL and one participant above 250 mL.

For sample #23721 eighteen of the reporting participants mentioned that they are accredited for this test. Seventeen of the reporting participants mentioned to have used test method EN13130-1 or EN13130, seven participants mentioned to have used an in house method. Five participants reported to use water to clean the test item which is not in line with test method EN13130-1 paragraph 15.5.

Most of the participants used a surface area between 1.9 dm<sup>2</sup> and 2.2 dm<sup>2</sup>. Four participants used a surface area between 0.3 dm<sup>2</sup> and 1 dm<sup>2</sup>. Most of the participants used a volume of simulant between 200 mL and 250 mL. Three participants used a volume below 200 mL and one participant above 250 mL. In general, most of the participants used a contact surface/volume of simulant ratio of 0.6 dm<sup>2</sup>/100 mL. It is remarkable that the participants mention a different surface area for the same volume used.

For sample #23720 and for sample #23721 most of the participants preheated the simulant solution and most of the participants used an oven as equipment. Most of the participants reported to use a seal during the test. Several different types of seals were reported by the participants, e.g. a plastic film/foil, an aluminum film, a glass plate/watch or an airtight container.

None of the above details have shown an apparent influence on the test results in this PT.

## 5 DISCUSSION

The limits for specific migration for Phthalates (see table 10) and Metals (see table 11) are mentioned in mg/kg food or food simulant. It is mentioned in EN13130-1 that the limits expressed in mg/kg food shall be divided by the conventional conversion factor of 6 in order to express them in mg/dm<sup>2</sup>, see next tables.

| Component | Specific Migration Limit<br>in mg/kg food  | Specific Migration Limit<br>in mg/dm <sup>2</sup> |
|-----------|--------------------------------------------|---------------------------------------------------|
| DEHP      | 0.6                                        | 0.1                                               |
| DAP       | shall not migrate in detectable quantities | shall not migrate in detectable quantities        |

Table 10: Specific Migration maximum limits according to EU 2023/1442

| Component | Specific Migration Limit<br>in mg/kg food or food simulant | Specific Migration Limit<br>in mg/dm <sup>2</sup> |
|-----------|------------------------------------------------------------|---------------------------------------------------|
| Aluminum  | 1                                                          | 0.167                                             |
| Barium    | 1                                                          | 0.167                                             |
| Cobalt    | 0.05                                                       | 0.008                                             |
| Copper    | 5                                                          | 0.833                                             |
| Iron      | 48                                                         | 8                                                 |
| Lithium   | 0.6                                                        | 0.1                                               |
| Manganese | 0.6                                                        | 0.1                                               |
| Nickel    | 0.02                                                       | 0.003                                             |
| Zinc      | 5                                                          | 0.833                                             |

Table 11: Specific Migration maximum limits according to EU 2020/1245 (ANNEX II)

Fifteen participants would have rejected sample #23720 for DEHP, while six participants would have accepted the sample for DEHP.

All reporting participants (except one) would have accepted sample #23721 for Aluminum. Almost all reporting participants would have rejected sample #23721 for Barium, while two participants would have accepted the sample for Barium. All reporting participants would have rejected sample #23721 for Cobalt.

### 6 CONCLUSION

It is to be expected that the variation of the migration results in real practice will be larger than observed in thit PT as the test conditions like time, temperature, etc. will not be prescribed but will be selected by the individual laboratories.

Each participating laboratory will have to evaluate its performance in this study and decide about any corrective actions if necessary. Therefore, participation on a regular basis in this scheme could be helpful to improve the performance and thus increase of the quality of the analytical results.

### **APPENDIX 1**

Determination of Specific Migration of DEHP - Bis-2-ethylhexylphthalate on sample #23720; results in mg/dm<sup>2</sup> per contact surface

| lak   |                          | walue    | un a ul r       | -//     |                                                             |
|-------|--------------------------|----------|-----------------|---------|-------------------------------------------------------------|
| lad   | method                   | value    | mark            | z(targ) | remarks                                                     |
| 339   |                          | 0.289    | С               | 2.72    | first reported 1.3125                                       |
| 362   | In house                 | 0.12     | C.E             | -1.70   | first reported 3.57: calculation difference, iis calc. 3.57 |
| 551   |                          |          | - 1             |         |                                                             |
| 2108  | In house                 | 0 2713   |                 | 2.26    |                                                             |
| 2100  | In house                 | 0.2713   | -               | 2.20    | as laulation differences iis as laulated 0.00000            |
| 2115  | In nouse                 | 0.00149  | E               | -4.01   | calculation difference, its calculated 0.00996              |
| 2132  | EN13130                  | 0.20     |                 | 0.39    |                                                             |
| 2300  | EN13030-1                | 0.0265   |                 | -4.15   |                                                             |
| 2353  |                          | 0.258    |                 | 1.91    |                                                             |
| 2365  | GB31604 30               | 0 2300   |                 | 1 18    |                                                             |
| 2366  |                          |          |                 |         |                                                             |
| 2000  | In house                 | 0.0161   |                 | 0.01    |                                                             |
| 2304  |                          | 0.2101   |                 | 0.01    |                                                             |
| 2385  | EN13030-1                | 0.3562   |                 | 4.48    |                                                             |
| 2475  | In house                 | 0.4017   |                 | 5.68    |                                                             |
| 2482  |                          |          |                 |         |                                                             |
| 2500  |                          |          |                 |         |                                                             |
| 2510  |                          |          |                 |         |                                                             |
| 2515  | EN13030-1                | 0 11660  |                 | _1 70   |                                                             |
| 2010  | LIN15050-1               | 0.11003  |                 | -1.75   |                                                             |
| 2000  |                          |          |                 |         |                                                             |
| 2797  | In house                 | 0.054    |                 | -3.43   |                                                             |
| 2826  | In house                 | 0.2689   |                 | 2.20    |                                                             |
| 2897  |                          |          |                 |         |                                                             |
| 2901  |                          |          |                 |         |                                                             |
| 2925  |                          |          |                 |         |                                                             |
| 2076  | EN13030 1                | 0.068    |                 | 3 07    |                                                             |
| 2000  |                          | 0.000    |                 | 4.05    |                                                             |
| 3002  | EPA3010/02/0E            | 0.023    |                 | -4.25   |                                                             |
| 3017  | CPSC-CH-C1001-09.4/-09.3 | 0.0624   |                 | -3.21   |                                                             |
| 3024  | EPA8061                  | 0.1183   |                 | -1.75   |                                                             |
| 3028  | In house                 | >0.02674 |                 |         |                                                             |
| 3122  | In house                 | 0.2      |                 | 0.39    |                                                             |
| 3134  | In house                 | 0 492    |                 | 8 04    |                                                             |
| 2172  | EN13030 1                | 0.102    |                 | 1 00    |                                                             |
| 0100  | EN13030-1                | 0.1120   |                 | -1.90   |                                                             |
| 3182  |                          |          |                 |         |                                                             |
|       |                          |          |                 |         |                                                             |
|       | normality                | OK       |                 |         |                                                             |
|       | n                        | 21       |                 |         |                                                             |
|       | outliers                 | 0        |                 |         |                                                             |
|       | mean (n)                 | 0 1851   |                 |         |                                                             |
|       | st dov. (n)              | 0.13306  | PSD - 72%       |         |                                                             |
|       |                          | 0.13300  | $R_{3D} = 72.0$ |         |                                                             |
|       | R(calc.)                 | 0.3726   |                 |         |                                                             |
|       | st.dev.(Horwitz)         | 0.03817  |                 |         |                                                             |
|       | R(Horwitz)               | 0.1069   |                 |         |                                                             |
|       |                          |          |                 |         |                                                             |
| 0.0   |                          |          |                 |         | 25                                                          |
| 0.0 T |                          |          |                 |         | 3.0                                                         |
|       |                          |          |                 |         | 3 - Kernel Density                                          |
| 0.5   |                          |          |                 |         |                                                             |
|       |                          |          |                 |         |                                                             |



# Determination of Specific Migration of DAP – Diallylphthalate on sample #23720; results in mg/dm<sup>2</sup> per contact surface

| lab            | method          |      |      | value    |     | mark    | z    | (targ) | remarks          |                    |       |
|----------------|-----------------|------|------|----------|-----|---------|------|--------|------------------|--------------------|-------|
| 339            |                 |      |      | 0.282    |     | С       |      | 0.56   | first reported 1 | .284               |       |
| 362            |                 |      |      |          |     |         |      |        |                  |                    |       |
| 551            | In the second   |      |      |          |     |         |      |        |                  |                    |       |
| 2108           | In nouse        |      |      | 0.4226   |     |         |      | 3.38   |                  |                    |       |
| 2110           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2300           | EN13030-1       |      |      | 0.0628   |     |         |      | -3.83  |                  |                    |       |
| 2353           | Entropoor       |      |      | 0.235    |     |         |      | -0.38  |                  |                    |       |
| 2365           | GB31604.30      |      |      | 0.2036   |     |         |      | -1.01  |                  |                    |       |
| 2366           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2384           | In house        |      |      | 0.1326   |     |         |      | -2.43  |                  |                    |       |
| 2385           | EN13030-1       |      |      | 0.2766   |     |         |      | 0.45   |                  |                    |       |
| 2475           | In house        |      |      | 0.3756   |     |         |      | 2.44   |                  |                    |       |
| 2482           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2500           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2510           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2553           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2797           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2826           | In house        |      |      | 0.3138   |     |         |      | 1.20   |                  |                    |       |
| 2897           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2901           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2925           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2976           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 3002           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 3017           |                 |      |      | 0 1006   |     |         |      | 1 00   |                  |                    |       |
| 3024           | In house        |      |      | >0.1990  | 74  |         |      | -1.09  |                  |                    |       |
| 3122           | In house        |      |      | 0.020    | / 4 |         |      | -1 08  |                  |                    |       |
| 3134           | In house        |      |      | 0.470    |     |         |      | 4.33   |                  |                    |       |
| 3172           | EN13030-1       |      |      | 0.1270   |     |         |      | -2.54  |                  |                    |       |
| 3182           |                 |      |      |          |     |         |      |        |                  |                    |       |
|                | n ormality      |      |      | OK       |     |         |      |        |                  |                    |       |
|                | normality       |      |      | 12<br>12 |     |         |      |        |                  |                    |       |
|                | outliers        |      |      | 0        |     |         |      |        |                  |                    |       |
|                | mean (n)        |      |      | 0 2539   |     |         |      |        |                  |                    |       |
|                | st dev (n)      |      |      | 0 1193   | 5   | RSD = 4 | 17%  |        |                  |                    |       |
|                | R(calc.)        |      |      | 0.3342   | •   |         |      |        |                  |                    |       |
|                | st.dev.(Horwitz | :)   |      | 0.0499   | 4   |         |      |        |                  |                    |       |
|                | R(Horwitz)      | -    |      | 0.1398   |     |         |      |        |                  |                    |       |
|                |                 |      |      |          |     |         |      |        |                  | -                  |       |
| <sup>0.5</sup> |                 |      |      |          |     |         |      |        | ۵                | 4                  | noity |
| 0.45 -         |                 |      |      |          |     |         |      |        | ۵                | 3.5 -              | Isity |
| 0.4            |                 |      |      |          |     |         |      | ۵      |                  | 3                  |       |
| 0.35           |                 |      |      |          |     |         | ٨    |        |                  | 25                 |       |
| 0.3 -          |                 |      |      |          |     | ۵ ۵     | -    |        |                  | 2.3                |       |
| 0.25 +         |                 |      |      | ۸.       |     |         |      |        |                  | 2                  |       |
| 0.2 +          |                 | Δ    | Δ    | Δ        |     |         |      |        |                  | 1.5                |       |
| 0.15           | Δ Δ             |      |      |          |     |         |      |        |                  |                    |       |
| 0.05 A         |                 |      |      |          |     |         |      |        |                  |                    |       |
| 0.00           |                 |      |      |          |     |         |      |        |                  |                    |       |
| 2300           | 3172            | 3024 | 3122 | 2365     |     | 339     | 2826 | 2475   | 2108             | -0.2 0 0.2 0.4 0.4 | 6 0.8 |

## Determination of Specific Migration of Aluminum as Al on sample #23721; results in mg/dm<sup>2</sup> per contact surface

| lab                                                                                                                                                          | method                                                                                                                                                             | value                                                                                                                                                      | mark            | z(targ)                                                                                                   | remarks                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 339                                                                                                                                                          |                                                                                                                                                                    | 0.166                                                                                                                                                      | E,G(0.05)       | 28.17                                                                                                     | calculation difference, iis calc. 0.028; possibly reported in mg/kg?                          |
| 362<br>551<br>2108<br>2115<br>2132<br>2300<br>2353<br>2365<br>2366<br>2384<br>2385                                                                           | EN13130-1<br>EN13130-1<br>EN13130-1<br>EN13130-1<br>EN13130-1<br>EN13130-1<br>EN13130-1                                                                            | 0.00583<br>0.01589<br>0.16<br>ND<br>0.01714<br>0.0177<br><0.04<br>0.02475                                                                                  | G(0.01)<br>C    | -2.30<br>-0.39<br>27.02<br>-0.15<br>-0.05<br><br>1.30                                                     | first reported 0.102854                                                                       |
| 2475<br>2482<br>2500<br>2510<br>2555<br>2553<br>2797<br>2826<br>2897<br>2901<br>2925<br>2976<br>3002<br>3017<br>3024<br>3017<br>3028<br>3122<br>3134<br>3172 | EN13130-1<br>In house<br>EN13130-1<br>In house<br>EN13130-1<br>EN13130-1<br>EN13130-1<br>In house<br>In house<br>EN1186-1/-7<br>EN13130-1<br>In house<br>EN13130-1 | 0.0110<br><br>0.0330<br><0.01665<br><br>0.0189<br>Not detected<br>0.0177<br>0.0197<br>0.0149<br>1.039<br>0.019<br><br>0.011617<br><br>0.0505<br><br>< 0.03 | C,G(0.01)<br>ex | -1.32<br><br>2.87<br><br>0.18<br><br>0.05<br>0.34<br>-0.58<br>194.24<br>0.20<br><br>-1.20<br><br>6.19<br> | first reported 25.98<br>test results excluded: two statistical outliers in related parameters |
| 3182                                                                                                                                                         | EN13130-1<br>normality<br>n<br>outliers<br>mean (n)<br>st.dev. (n)<br>R(calc.)<br>st.dev.(Horwitz)<br>R(Horwitz)                                                   | 0.024<br>suspect<br>14<br>3 + 1ex<br>0.0179<br>0.00659<br>0.0184<br>0.00526<br>0.0147                                                                      | RSD = 37%       | 1.15                                                                                                      |                                                                                               |
| 1.06<br>1.05<br>1.04<br>1.03<br>1.02<br>1.01<br>0<br><del>x</del>                                                                                            | <u>κ</u> χ χ ν                                                                                                                                                     | <u> </u>                                                                                                                                                   | <u> </u>        | ठे ह<br>•                                                                                                 | x<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X                            |
| 2                                                                                                                                                            | , , , , , , , , , , , , , , , , , , ,                                                                                                                              | 8 5 5 5                                                                                                                                                    | 3 3 3           | i a                                                                                                       |                                                                                               |

## Determination of Specific Migration of Barium as Ba on sample #23721; results in mg/dm<sup>2</sup> per contact surface

| lab    | method                                               | value                       | mark      | z(targ) | remarks                                                              |
|--------|------------------------------------------------------|-----------------------------|-----------|---------|----------------------------------------------------------------------|
| 339    |                                                      | 1.682                       | E,R(0.01) | 32.48   | calculation difference, iis calc. 0.280; possibly reported in mg/kg? |
| 362    | In house                                             | 0.208                       |           | -0.36   |                                                                      |
| 551    |                                                      |                             |           |         |                                                                      |
| 2108   |                                                      | 0.20866                     |           | -0.34   |                                                                      |
| 2115   | EN13130                                              | 0.847                       | R(0.01)   | 13.88   |                                                                      |
| 2132   | EN13130-1                                            | 0.1653                      |           | -1.31   |                                                                      |
| 2300   | EN13130-1                                            | 0.00                        |           | -3.05   |                                                                      |
| 2365   | EN13130-1                                            | 0.271                       | C         | 0.40    | first reported 1 45201                                               |
| 2366   | EN13130-1                                            | 0.24200                     | 0         | 0.40    |                                                                      |
| 2384   | EN13130-1                                            | 0.327                       |           | 2.29    |                                                                      |
| 2385   | EN13130-1                                            | 0.1667                      |           | -1.28   |                                                                      |
| 2475   | EN13130-1                                            | 0.1878                      |           | -0.81   |                                                                      |
| 2482   | EN13130-1                                            | 0.1889                      |           | -0.78   |                                                                      |
| 2500   |                                                      |                             |           |         |                                                                      |
| 2510   | In house                                             | 0.2612                      |           | 0.83    |                                                                      |
| 2515   | EN13130-1                                            | 0.28994                     |           | 1.47    |                                                                      |
| 2553   |                                                      |                             | _         |         |                                                                      |
| 2797   | In house                                             | 0.2638                      | E         | 0.89    | calculation difference, ils calulated 0.2837                         |
| 2826   | EN13130-1                                            | 0.242                       |           | 0.40    |                                                                      |
| 2097   | EN13130-1                                            | 0.2735                      |           | 1.10    |                                                                      |
| 2901   | In house                                             | 0.3007                      |           | 0.12    |                                                                      |
| 2976   | In house                                             | 0.2200                      | С         | -0.53   | first reported 5 00                                                  |
| 3002   | In house                                             | 0.263                       | 0         | 0.87    |                                                                      |
| 3017   | EN1186-1/-7                                          | 0.1165                      |           | -2.39   |                                                                      |
| 3024   | EN13130-1                                            | 0.188333                    |           | -0.79   |                                                                      |
| 3028   |                                                      |                             |           |         |                                                                      |
| 3122   | In house                                             | 0.5936                      | R(0.01)   | 8.23    |                                                                      |
| 3134   |                                                      |                             |           |         |                                                                      |
| 3172   | EN13130-1                                            | 0.223                       |           | -0.02   |                                                                      |
| 3182   | EN13130-1                                            | 0.254                       |           | 0.67    |                                                                      |
|        | normality                                            | suspect                     |           |         |                                                                      |
|        | n                                                    | 24                          |           |         |                                                                      |
|        | outliers                                             | 3                           |           |         |                                                                      |
|        | mean (n)                                             | 0.2240                      |           |         |                                                                      |
|        | st.dev. (n)                                          | 0.05974                     | RSD = 27% | )       |                                                                      |
|        | R(calc.)                                             | 0.1673                      |           |         |                                                                      |
|        | st.dev.(Horwitz)                                     | 0.04489                     |           |         |                                                                      |
|        | R(Horwitz)                                           | 0.1257                      |           |         |                                                                      |
|        |                                                      |                             |           |         |                                                                      |
| 0.6 T  |                                                      |                             |           |         | x 8                                                                  |
| 0.5    |                                                      |                             |           |         | 7 - Kernel Density                                                   |
| 0.5    |                                                      |                             |           |         | 6 -                                                                  |
| 0.4    |                                                      |                             |           |         |                                                                      |
| —      |                                                      |                             |           |         |                                                                      |
| 0.3    |                                                      |                             |           | Δ Δ     |                                                                      |
| 0.2    | <b>.</b>                                             | Δ Δ Δ Δ                     |           |         | ] 3 -                                                                |
|        |                                                      |                             |           |         |                                                                      |
| 0.1    |                                                      |                             |           |         | ,                                                                    |
| A      |                                                      |                             |           |         |                                                                      |
| 2300 L | 2132<br>2475<br>2475<br>2482<br>2482<br>2482<br>2482 | 362<br>2108<br>3172<br>3172 | 2365      | 2510    |                                                                      |

## Determination of Specific Migration of Cobalt as Co on sample #23721; results in mg/dm<sup>2</sup> per contact surface

| lah   | method                               | value                | mark      | z(targ) | remarks                                                               |
|-------|--------------------------------------|----------------------|-----------|---------|-----------------------------------------------------------------------|
| 220   | method                               | 0.610                |           | 202 76  | coloulation difference, iie colo, 0,100; peacibly reported in mar/lan |
| 339   | In house                             | 0.012                | ⊑,⊼(0.01) | 23.10   | calculation difference, its calc. 0.102; possibly reported in mg/kg?  |
| 302   | In nouse                             | 0.07                 |           | -1.17   |                                                                       |
| 551   |                                      |                      |           |         |                                                                       |
| 2108  |                                      | 0.06938              | 5/2.24    | -1.20   |                                                                       |
| 2115  | EN13130                              | 0.322                | R(0.01)   | 10.42   |                                                                       |
| 2132  | EN13130-1                            | 0.08027              |           | -0.70   |                                                                       |
| 2300  | EN13130-1                            | 0.08                 |           | -0.71   |                                                                       |
| 2353  | EN13130-1                            | 0.105                |           | 0.44    |                                                                       |
| 2365  | EN13130-1                            | 0.07929              | С         | -0.74   | first reported 0.47573                                                |
| 2366  | EN13130-1                            | 0.0855               |           | -0.46   |                                                                       |
| 2384  | EN13130-1                            | 0.149                |           | 2.46    |                                                                       |
| 2385  | EN13130-1                            | 0.0749               |           | -0.94   |                                                                       |
| 2475  | EN13130-1                            | 0.0809               |           | -0.67   |                                                                       |
| 2482  | EN13130-1                            | 0.06961              |           | -1.19   |                                                                       |
| 2500  |                                      |                      |           |         |                                                                       |
| 2510  | In house                             | 0.1223               |           | 1.24    |                                                                       |
| 2515  | EN13130-1                            | 0.13922              |           | 2.01    |                                                                       |
| 2553  |                                      |                      |           |         |                                                                       |
| 2797  | In house                             | 0.1239               |           | 1.31    |                                                                       |
| 2826  | EN13130-1                            | 0.114                |           | 0.85    |                                                                       |
| 2897  | EN13130-1                            | 0.1090               |           | 0.62    |                                                                       |
| 2901  | EN13130-1                            | 0.1056               |           | 0.47    |                                                                       |
| 2925  | In house                             | 0.08795              |           | -0.34   |                                                                       |
| 2976  | In house                             | 0.078                | С         | -0.80   | first reported 1.95                                                   |
| 3002  | In house                             | 0.095                |           | -0.02   |                                                                       |
| 3017  | EN1186-1/-7                          | 0.2112               | R(0.01)   | 5.32    |                                                                       |
| 3024  | EN13130-1                            | 0.073407             | · · ·     | -1.01   |                                                                       |
| 3028  |                                      |                      |           |         |                                                                       |
| 3122  | In house                             | 0.1990               | R(0.01)   | 4.76    |                                                                       |
| 3134  |                                      |                      | · · ·     |         |                                                                       |
| 3172  | EN13130-1                            | 0.1166               |           | 0.97    |                                                                       |
| 3182  | EN13130-1                            | 0.086                |           | -0.43   |                                                                       |
|       |                                      |                      |           |         |                                                                       |
|       | normality                            | OK                   |           |         |                                                                       |
|       | n                                    | 23                   |           |         |                                                                       |
|       | outliers                             | 4                    |           |         |                                                                       |
|       | mean (n)                             | 0.0954               |           |         |                                                                       |
|       | st.dev. (n)                          | 0.02324              | RSD = 24% | )       |                                                                       |
|       | R(calc.)                             | 0.0651               |           |         |                                                                       |
|       | st.dev.(Horwitz)                     | 0.02175              |           |         |                                                                       |
|       | R(Horwitz)                           | 0.0609               |           |         |                                                                       |
|       |                                      |                      |           |         |                                                                       |
| 0.3 т |                                      |                      |           |         | 20                                                                    |
|       |                                      |                      |           |         | 18 - Kernel Density                                                   |
| 0.25  |                                      |                      |           |         |                                                                       |
|       |                                      |                      |           |         |                                                                       |
| 0.2   |                                      |                      |           |         | x                                                                     |
|       |                                      |                      |           |         |                                                                       |
| 0.15  |                                      |                      |           |         |                                                                       |
| 01    |                                      |                      |           | ۵ ۵ ۵   | ۵ ۵    8 -                                                            |
|       |                                      | Δ Δ Δ Δ              | 4         |         | 6 -                                                                   |
| 0.05  | -                                    |                      |           |         |                                                                       |
|       |                                      |                      |           |         |                                                                       |
| 0 L   | 2 % 2 £ 2 2 2                        | £ 8 2 x              | 7 8 8     | 5 8 2   |                                                                       |
| 210   | 5 5 5 5 5 3 5 3<br>5 5 5 5 5 5 3 5 3 | 2 34<br>2 34<br>2 34 | 586 534   | 312 285 |                                                                       |
|       |                                      |                      |           |         |                                                                       |

### APPENDIX 2 Other reported test results

### Sample #23720

| Determination of Spec | cific Migration of other p | ohthalates; results in mg/dm <sup>2</sup> |
|-----------------------|----------------------------|-------------------------------------------|
|-----------------------|----------------------------|-------------------------------------------|

| lab  | BBP          | DBP          | DIDP         | DINP         | DNOP         | DCHP         | DEP          |
|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 339  | <0.1         | <0.1         | <0.5         | <0.5         | na           | na           | na           |
| 362  |              | 0.286        |              |              |              |              |              |
| 551  |              |              |              |              |              |              |              |
| 2108 | not detected |
| 2115 |              |              |              |              |              |              |              |
| 2132 | <1.0         | <0.1         | <1.0         | <1.0         |              |              |              |
| 2300 | not detected | 0.0265       | not detected | not detected | not detected | not detected | 0.435        |
| 2353 | ND           | ND           | ND           | ND           | NA           | NA           | NA           |
| 2365 | <0.0123      | <0.0123      | <0.0123      | <0.0123      | <0.0123      | <0.0123      | <0.0123      |
| 2366 |              |              |              |              |              |              |              |
| 2384 | Not detected | Not detected | Not detected | Not detected | Not analyzed | Not detected | Not detected |
| 2385 | < 0.007      | < 0.007      | < 0.007      | < 0.007      | < 0.007      | < 0.007      | < 0.007      |
| 2475 |              |              |              |              |              |              |              |
| 2482 |              |              |              |              |              |              |              |
| 2500 |              |              |              |              |              |              |              |
| 2510 |              |              |              |              |              |              |              |
| 2515 | <0.0013      | <0.0013      | <0.0013      | <0.0013      |              |              |              |
| 2553 |              |              |              |              |              |              |              |
| 2797 |              |              |              |              |              |              |              |
| 2826 | Not detected | Not detected | Not detected | Not detected |              |              |              |
| 2897 |              |              |              |              |              |              |              |
| 2901 |              |              |              |              |              |              |              |
| 2925 |              |              |              |              |              |              |              |
| 2976 | Not Detected |
| 3002 | not detected |
| 3017 | not detected | not detected | not detected | 0.0432       | not detected | not detected | not detected |
| 3024 | Not Detected | 0.0014       | Not Detected |
| 3028 | <0.00107     | <0.00107     | <0.00107     | <0.00107     | <0.00107     | <0.00107     | <0.00107     |
| 3122 | nd           |
| 3134 | not detected | not detected | not detected | below LOQ    | not detected | not analysed | not detected |
| 3172 | < 0.014      | < 0.014      | < 0.014      | < 0.014      | < 0.014      | < 0.014      | < 0.014      |
| 3182 | Not analysed |

Determination of Specific Migration of other phthalates; results in mg/dm<sup>2</sup> -- continued --

| lab  | DMP          | DNHP         | DIBP         | DPHP         | DNPP         | DUP            | DPRP           |
|------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|
| 339  | na           | na           | na           | na           | na           | na             | na             |
| 362  |              |              |              |              |              |                |                |
| 551  |              |              |              |              |              |                |                |
| 2108 | not detected   | not detected   |
| 2115 |              |              |              |              |              |                |                |
| 2132 |              |              |              |              |              |                |                |
| 2300 | not detected   | not detected   |
| 2353 | NA           | NA           | ND           | NA           | NA           | NA             | NA             |
| 2365 | <0.0123      | <0.0123      | <0.0123      | <0.0123      | <0.0123      | <0.0123        | <0.0123        |
| 2366 |              |              |              |              |              |                |                |
| 2384 | Not detected   | Not detected   |
| 2385 | < 0.007      | < 0.007      | < 0.007      | < 0.007      | < 0.007      | < 0.007        | < 0.007        |
| 2475 |              |              |              |              |              |                |                |
| 2482 |              |              |              |              |              |                |                |
| 2500 |              |              |              |              |              |                |                |
| 2510 |              |              |              |              |              |                |                |
| 2515 |              |              | <0.0013      |              |              |                |                |
| 2553 |              |              |              |              |              |                |                |
| 2797 |              |              |              |              |              |                |                |
| 2826 |              |              | Not detected |              |              |                |                |
| 2897 |              |              |              |              |              |                |                |
| 2901 |              |              |              |              |              |                |                |
| 2925 |              |              |              |              |              |                |                |
| 2976 | Not Detected   | Not Detected   |
| 3002 | not detected   | not detected   |
| 3017 | not detected | not applicable | not applicable |
| 3024 | Not Detected | Not Detected | Not Detected | Not Analyzed | Not Detected | Not Analyzed   | Not Analyzed   |
| 3028 | <0.00107     | <0.00107     | <0.00107     | <0.00107     | <0.00107     | <0.00107       | <0.00107       |
| 3122 | 0.13         | nd           | nd           | nd           | nd           | nd             | nd             |
| 3134 | not detected | not analysed | not detected | not analysed | not analysed | not analysed   | not analysed   |
| 3172 | < 0.014      | < 0.014      | < 0.014      | < 0.014      | < 0.014      | < 0.014        | < 0.014        |
| 3182 | Not analysed   | Not analysed   |

## Sample #23721

| Determination of | Specific | Migration | of other | elements: | results in | ma/dm <sup>2</sup> |
|------------------|----------|-----------|----------|-----------|------------|--------------------|
|                  |          |           |          | ,         |            |                    |

| lab  | Copper (Cu)    | Iron (Fe)      | Lithium (Li)   | Manganese (Mn) | Nickel (Ni)    | Zinc (Zn)      |
|------|----------------|----------------|----------------|----------------|----------------|----------------|
| 339  | 0.001          | 0.005          | 0              | 0              | 0.001          | 0.011          |
| 362  |                |                |                |                |                |                |
| 551  |                |                |                |                |                |                |
| 2108 | not detected   | not detected   | not detected   | 0.00137        | not detected   | not detected   |
| 2115 |                |                |                |                |                | 0.012          |
| 2132 | 0.0002140      | 0.001452       | <0.1           | 0.00004627     | 0.0004089      | 0.001107       |
| 2300 | not detected   | 0.03           | not detected   | not detected   | 0.005          | 0.013          |
| 2353 | ND             | ND             | ND             | ND             | ND             | ND             |
| 2365 | <0.25          | <5             | <0.1           | <0.1           | <0.01          | <0.5           |
| 2366 | <0.0417        | <0.833         | <0.0167        | <0.0167        | <0.00167       | <0.0833        |
| 2384 | <0.04          | <0.04          | <0.08          | <0.04          | <0.002         | <0.08          |
| 2385 | <0.001         | <0.001         | <0.001         | <0.001         | <0.001         | 0.0038         |
| 2475 |                | 0.0025         |                |                |                | 0.0030         |
| 2482 |                |                |                |                |                |                |
| 2500 |                |                |                |                |                |                |
| 2510 | Below LOQ      | 0.0399         |
| 2515 | <0.0033        | <0.0033        | <0.0008        | <0.0008        | <0.0008        | <0.0033        |
| 2553 |                |                |                |                |                |                |
| 2797 | not determined |
| 2826 | Not detected   |
| 2897 | not detected   | not detected   | not detected   | not detected   | 0.0003         | not detected   |
| 2901 |                |                |                |                |                |                |
| 2925 | ND             | ND             | ND             | ND             | ND             | ND             |
| 2976 | Not Detected   | Not Detected   |                | Not Detected   | Not Detected   | Not Detected   |
| 3002 | not detected   | 0.030          |
| 3017 | not detected   | 0.0045         | not detected   | not detected   | not detected   | not detected   |
| 3024 | 0.002018       | 0.001764       | Not Detected   | Not Detected   | Not Detected   | 0.004939       |
| 3028 |                |                |                |                |                |                |
| 3122 | nd             | nd             | nd             | nd             | nd             | nd             |
| 3134 |                |                |                |                |                |                |
| 3172 | < 0.166        | < 1.666        | < 0.0166       | < 0.0166       | < 0.00166      | < 0.0833       |
| 3182 | Not detected   |

### APPENDIX 3 Details on reported intermediate test results

| surface volume |              |              | final concentration in simulant (mg/L) |              |              |              |              |  |
|----------------|--------------|--------------|----------------------------------------|--------------|--------------|--------------|--------------|--|
|                | area         | simulant     |                                        |              |              |              |              |  |
| lab            | (dm²)        | (mL)         | BBP                                    | DEHP         | DBP          | DIDP         | DINP         |  |
| 339            | 1.60         | 220          | <0.1                                   | 2.10         | <0.1         | <0.5         | <0.5         |  |
| 362            | 1.61         | 230          |                                        | 25           | 2            |              |              |  |
| 551            |              |              |                                        |              |              |              |              |  |
| 2108           | 1.75         | 200          | not detected                           | 2.374        | not detected | not detected | not detected |  |
| 2115           | 1.58         | 200          |                                        | 0.07867      |              |              |              |  |
| 2132           | 1.60         | 250          | <1.0                                   | 1.29         | <0.1         | <1.0         | <1.0         |  |
| 2300           | 1.72         | 240          | not detected                           | 0.19         | 0.21         | not detected | not detected |  |
| 2353           | 1.5438       | 220          | ND                                     | 1.81         | ND           | ND           | ND           |  |
| 2365           | 1.62         | 200          | <0.1                                   | 1.86         | <0.1         | <0.1         | <0.1         |  |
| 2366           |              |              |                                        |              |              |              |              |  |
| 2384           | 1.8          | 200 C        | Not detected                           | 1.9453       | Not detected | Not detected | Not detected |  |
| 2385           | 1.7          | 230          | < 0,05                                 | 2.6344       | < 0.05       | < 0.05       | < 0.05       |  |
| 2475           | 1.74         | 250          |                                        | 2.7955       |              |              |              |  |
| 2482           |              |              |                                        |              |              |              |              |  |
| 2500           |              |              |                                        |              |              |              |              |  |
| 2510           |              |              |                                        |              |              |              |              |  |
| 2515           | 1.513        | 200          | <0.01                                  | 0.8813       | <0.01        | <0.01        | <0.01        |  |
| 2553           |              |              |                                        |              |              |              |              |  |
| 2797           | 1.393        | 180          |                                        | 0.41828      |              |              |              |  |
| 2826           | 1.618        | 240          | Not detected                           | 1.815        | Not detected | Not detected | Not detected |  |
| 2897           |              |              |                                        |              |              |              |              |  |
| 2901           |              |              |                                        |              |              |              |              |  |
| 2925           |              |              |                                        |              |              |              |              |  |
| 2976           | 2.32         | 240          | Not Detected                           | 0.66         | Not Detected | Not Detected | Not Detected |  |
| 3002           | 1.5          | 250          | not detected                           | 0.141        | not detected | not detected | not detected |  |
| 3017           | 0.250        | 100          | not detected                           | 0.1561       | not detected | not detected | 0.1083       |  |
| 3024           | 0.9570       | 100.00       | Not Detected                           | 1.1325       | 0.0137       | Not Detected | Not Detected |  |
| 3028           | 1.87         | 200          | <0.010                                 | >0.250       | <0.010       | <0.010       | <0.010       |  |
| 3122           | 1.7          | 266          | nd                                     | 1.25         | nd           | nd           | nd           |  |
| 3134           | 1.667        | 250          | not detected                           | 3.282        | not detected | not detected | below LOQ    |  |
| 3172           | 1.4334       | 200          | < 0.1                                  | 0.8069       | < 0.1        | < 0.1        | < 0.1        |  |
| 3182           | Not analysed | Not analysed | Not analysed                           | Not analysed | Not analysed | Not analysed | Not analysed |  |

## sample #23720 Surface area, volume of simulant and final concentrations in mg/L

Lab 2384 reported 2000 mL

## sample #23720 Surface area, volume of simulant and final concentrations in mg/L -- continued --

|      | final concentration in simulant (mg/L) |              |              |              |              |              |
|------|----------------------------------------|--------------|--------------|--------------|--------------|--------------|
| lab  | DNOP                                   | DCHP         | DEP          | DMP          | DNHP         | DIBP         |
| 339  | na                                     | na           | na           | na           | na           | na           |
| 362  |                                        |              |              |              |              |              |
| 551  |                                        |              |              |              |              |              |
| 2108 | not detected                           | not detected | not detected | not detected | not detected | not detected |
| 2115 |                                        |              |              |              |              |              |
| 2132 |                                        |              |              |              |              |              |
| 2300 | not detected                           | not detected | 3.12         | not detected | not detected | not detected |
| 2353 | NA                                     | NA           | NA           | NA           | NA           | ND           |
| 2365 | <0.1                                   | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| 2366 |                                        |              |              |              |              |              |
| 2384 | Not analyzed                           | Not detected |
| 2385 | < 0.05                                 | < 0.05       | < 0.05       | < 0.05       | < 0.05       | < 0.05       |
| 2475 |                                        |              |              |              |              |              |
| 2482 |                                        |              |              |              |              |              |
| 2500 |                                        |              |              |              |              |              |
| 2510 |                                        |              |              |              |              |              |
| 2515 |                                        |              |              |              |              | <0.01        |
| 2553 |                                        |              |              |              |              |              |
| 2797 |                                        |              |              |              |              |              |
| 2826 |                                        |              |              |              |              | Not detected |
| 2897 |                                        |              |              |              |              |              |
| 2901 |                                        |              |              |              |              |              |
| 2925 |                                        |              |              |              |              |              |
| 2976 | Not Detected                           | Not Detected | Not Detected | Not Detected | Not Detected | Not Detected |
| 3002 | not detected                           | not detected | not detected | not detected | not detected | not detected |
| 3017 | not detected                           | not detected | not detected | not detected | not detected | not detected |
| 3024 | Not Detected                           | Not Detected | Not Detected | Not Detected | Not Detected | Not Detected |
| 3028 | <0.010                                 | <0.010       | <0.010       | <0.010       | <0.010       | <0.010       |
| 3122 | nd                                     | nd           | nd           | 0.86         | nd           | nd           |
| 3134 | not detected                           | not analysed | not detected | not detected | not analysed | not detected |
| 3172 | < 0.1                                  | < 0.1        | < 0.1        | < 0.1        | < 0.1        | < 0.1        |
| 3182 | Not analysed                           | Not analysed | Not analysed | Not analysed | Not analysed | Not analysed |

## sample #23720 Surface area, volume of simulant and final concentrations in mg/L -- continued --

|      | final concentration in simulant (mg/L) |              |                |                |                |  |  |
|------|----------------------------------------|--------------|----------------|----------------|----------------|--|--|
| lab  | DHPH                                   | DNPP         | DUP            | DPRP           | DAP            |  |  |
| 339  | na                                     | na           | na             | na             | 2.054          |  |  |
| 362  |                                        |              |                |                |                |  |  |
| 551  |                                        |              |                |                |                |  |  |
| 2108 | not detected                           | not detected | not detected   | not detected   | 3.698          |  |  |
| 2115 |                                        |              |                |                |                |  |  |
| 2132 |                                        |              |                |                |                |  |  |
| 2300 | not detected                           | not detected | not detected   | not detected   | 0.45           |  |  |
| 2353 | NA                                     | NA           | NA             | NA             | 1.65           |  |  |
| 2365 | <0.1                                   | <0.1         | <0.1           | <0.1           | 1.649          |  |  |
| 2366 |                                        |              |                |                |                |  |  |
| 2384 | Not detected                           | Not detected | Not detected   | Not detected   | 1.1930         |  |  |
| 2385 | < 0.05                                 | < 0.05       | < 0.05         | < 0.05         | 2.0441         |  |  |
| 2475 |                                        |              |                |                | 2.6143         |  |  |
| 2482 |                                        |              |                |                |                |  |  |
| 2500 |                                        |              |                |                |                |  |  |
| 2510 |                                        |              |                |                |                |  |  |
| 2515 |                                        |              |                |                |                |  |  |
| 2553 |                                        |              |                |                |                |  |  |
| 2797 |                                        |              |                |                |                |  |  |
| 2826 |                                        |              |                |                | 2.118          |  |  |
| 2897 |                                        |              |                |                |                |  |  |
| 2901 |                                        |              |                |                |                |  |  |
| 2925 |                                        |              |                |                |                |  |  |
| 2976 | Not Detected                           | Not Detected | Not Detected   | Not Detected   | N/A            |  |  |
| 3002 | not detected                           | not detected | not detected   | not detected   | not determined |  |  |
| 3017 | not detected                           | not detected | not applicable | not applicable | not applicable |  |  |
| 3024 | Not Analyzed                           | Not Detected | Not Analyzed   | Not Analyzed   | 1.9100         |  |  |
| 3028 | <0.010                                 | <0.010       | <0.010         | <0.010         | >0.250         |  |  |
| 3122 | nd                                     | nd           | nd             | nd             | 1.3            |  |  |
| 3134 | not analysed                           | not analysed | not analysed   | not analysed   | 3.132          |  |  |
| 3172 | < 0.1                                  | < 0.1        | < 0.1          | < 0.1          | 0.9099         |  |  |
| 3182 | Not analysed                           | Not analysed | Not analysed   | Not analysed   | Not analysed   |  |  |

#### sample #23721 Surface area, volume of simulant and final concentrations in mg/L

|      | surface | volume   | final concentration in simulant (mg/L) |          |          |                |                |
|------|---------|----------|----------------------------------------|----------|----------|----------------|----------------|
|      | area    | simulant |                                        | _        |          |                | _              |
| lab  | (dm²)   | (mL)     | AI                                     | Ва       | Co       | Cu             | Fe             |
| 339  | 2.08    | 350      | 0.165                                  | 1.666    | 0.606    | 0.001          | 0.005          |
| 362  | 2.0     | 330      |                                        | 1.259    | 0.447    |                |                |
| 551  |         |          |                                        |          |          |                |                |
| 2108 | 2       | 333      | 0.0350                                 | 1.2532   | 0.4167   | not detected   | not detected   |
| 2115 | 1       | 100      |                                        | 8.479    | 3.22     |                |                |
| 2132 | 2.079   | 346      | 0.0955                                 | 0.9935   | 0.4823   | 0.001286       | 0.008727       |
| 2300 | 2.08    | 346.7    | 0.95                                   | 0.36     | 0.46     | not detected   | 0.15           |
| 2353 | 2.0954  | 350      | ND                                     | 1.620    | 0.627    | ND             | ND             |
| 2365 | 2.12    | 353      | 0.1030                                 | 1.4534   | 0.4762   | <0.25          | <5             |
| 2366 | 2.10    | 350      | 0.106                                  | 1.471    | 0.513    | <0.25          | <5.0           |
| 2384 | 0.3     | 50       | <0.25                                  | 1.965    | 0.896    | <0.25          | <0.25          |
| 2385 | 2.0     | 330      | 0.154                                  | 1.01     | 0.454    | <0.005         | <0.005         |
| 2475 | 2.093   | 349      | 0.066                                  | 1.126    | 0.485    |                | 0.015          |
| 2482 | 2.12    | 354      | < 0,1                                  | 1.131    | 0.4169   | < 0,5          | < 1            |
| 2500 |         |          |                                        |          |          |                |                |
| 2510 | 2.1042  | 750      | 0.0923                                 | 0.7313   | 0.3423   | Below LOQ      | Below LOQ      |
| 2515 | 2.0418  | 340      | <0.1                                   | 1.7412   | 0.8361   | <0.02          | <0.02          |
| 2553 | 2.12    | 352.0    | 0.070                                  | 1.327    | 0.550    | <0.040         | 0.049          |
| 2797 | 2.05    | 186      | 0.22439                                | 3.1263   | 1.4689   | not determined | not determined |
| 2826 | 2.079   | 345      | Not detected                           | 1.46     | 0.69     | Not detected   | Not detected   |
| 2897 | 2.0     | 200      | 0.1766                                 | 2.7352   | 1.0902   | not detected   | not detected   |
| 2901 | 2.1     | 350      | 0.1182                                 | 1.8045   | 0.6336   | <0.001         | <0.05          |
| 2925 | 2.0384  | 200      | 0.149                                  | 2.295    | 0.880    | ND             | ND             |
| 2976 | 2.099   | 209.9    | 10.39 C                                | 2 C      | 0.78 C   | Not Detected   | Not Detected   |
| 3002 | 1.99    | 328      | 0.113                                  | 1.575    | 0.572    | not detected   | not detected   |
| 3017 | 1.0     | 100.0    | not applicable                         | 1.1645   | 2.112    | not detected   | 0.045          |
| 3024 | 2.0384  | 100.00   | 0.236819                               | 3.838993 | 1.496336 | 0.041138       | 0.035974       |
| 3028 |         |          |                                        |          |          |                |                |
| 3122 | 1       | 100      | 0.505                                  | 5.936    | 1.990    | nd             | nd             |
| 3134 |         |          |                                        |          |          |                |                |
| 3172 | 2.1     | 350      | < 0.2                                  | 1.34     | 0.70     | < 1.0          | < 10           |
| 3182 | 2.09    | 450.00   | 0.11                                   | 1.18     | 0.40     | Not detected   | Not detected   |

Lab 2976 first reported 259.75, 50.00 and 19.50 respectively

## sample #23721 Surface area, volume of simulant and final concentrations in mg/L -- continued --

|      | final concentration in simulant (mg/L) |                |                |                |  |  |
|------|----------------------------------------|----------------|----------------|----------------|--|--|
| lab  | Li                                     | Mn             | Ni             | Zn             |  |  |
| 339  | 0                                      | 0              | 0.001          | 0.011          |  |  |
| 362  |                                        |                |                |                |  |  |
| 551  |                                        |                |                |                |  |  |
| 2108 | not detected                           | 0.0083         | not detected   | not detected   |  |  |
| 2115 |                                        |                |                | 0.118          |  |  |
| 2132 | <0.1                                   | 0.000278       | 0.002457       | 0.006652       |  |  |
| 2300 | not detected                           | not detected   | 0.03           | 0.08           |  |  |
| 2353 | ND                                     | ND             | ND             | ND             |  |  |
| 2365 | <0.1                                   | <0.1           | <0.01          | <0.5           |  |  |
| 2366 | <0.10                                  | <0.10          | <0.01          | <0.50          |  |  |
| 2384 | <0.50                                  | <0.25          | <0.01          | <0.50          |  |  |
| 2385 | <0.005                                 | <0.005         | <0.005         | 0.023          |  |  |
| 2475 |                                        |                |                | 0.018          |  |  |
| 2482 | < 0,1                                  | < 0,1          | < 0,002        | < 0,5          |  |  |
| 2500 |                                        |                |                |                |  |  |
| 2510 | Below LOQ                              | Below LOQ      | Below LOQ      | 0.1118         |  |  |
| 2515 | <0.005                                 | <0.005         | <0.005         | <0.02          |  |  |
| 2553 | <0.010                                 | <0.010         | <0.010         | 0.052          |  |  |
| 2797 | not determined                         | not determined | not determined | not determined |  |  |
| 2826 | Not detected                           | Not detected   | Not detected   | Not detected   |  |  |
| 2897 | not detected                           | not detected   | 0.0025         | not detected   |  |  |
| 2901 | <0.001                                 | <0.001         | <0.001         | <0.05          |  |  |
| 2925 | ND                                     | ND             | ND             | ND             |  |  |
| 2976 |                                        | Not Detected   | Not Detected   | Not Detected   |  |  |
| 3002 | not detected                           | not detected   | not detected   | 0.091          |  |  |
| 3017 | not detected                           | not detected   | not detected   | not detected   |  |  |
| 3024 | Not Detected                           | Not Detected   | Not Detected   | 0.100672       |  |  |
| 3028 |                                        |                |                |                |  |  |
| 3122 | nd                                     | nd             | nd             | nd             |  |  |
| 3134 |                                        |                |                |                |  |  |
| 3172 | < 0.1                                  | < 0.1          | < 0.01         | < 0.5          |  |  |
| 3182 | Not detected                           | Not detected   | Not detected   | Not detected   |  |  |

## APPENDIX 4 Analytical details

### Sample #23720

| lab  | accr. ISO<br>17025 | sample cleaned prior to the migration step | simulant<br>preheated | Equipment<br>used | Sample sealed during test                     |
|------|--------------------|--------------------------------------------|-----------------------|-------------------|-----------------------------------------------|
| 339  | Yes                | No                                         | Yes                   | Oven              | Yes, with aluminum seal                       |
| 362  |                    |                                            |                       |                   |                                               |
| 551  |                    |                                            |                       |                   |                                               |
| 2108 | No                 | Yes, with lint-free cloth                  | Yes                   | Oven              | Yes, with plastic wrap                        |
| 2115 | No                 | No                                         | No                    | Incubator         | yes, with watch glass                         |
| 2132 | Yes                | Yes, with DI water                         | Yes                   | Oven              | Yes, tested in an airtight container          |
| 2300 | No                 | Yes, with lintfree tissue paper            | Yes                   | Oven              | Yes, with aluminum seal, with glass petridish |
| 2353 | No                 | No                                         | Yes                   | Oven              | Yes, covered by glass                         |
| 2365 | Yes                | No                                         | Yes                   | Oven              | Yes, with aluminum seal                       |
| 2366 |                    |                                            |                       |                   |                                               |
| 2384 | No                 | No                                         | Yes                   | Oven              | Yes, with aluminum seal                       |
| 2385 | Yes                | No                                         | Yes                   | Oven              | Yes, with glass plate                         |
| 2475 | No                 | No                                         | Yes                   | Oven              | Yes, with aluminum seal                       |
| 2482 |                    |                                            |                       |                   |                                               |
| 2500 |                    |                                            |                       |                   |                                               |
| 2510 |                    |                                            |                       |                   |                                               |
| 2515 | Yes                | No                                         | No                    | Oven              | Yes, with aluminum seal                       |
| 2553 |                    |                                            |                       |                   |                                               |
| 2797 | Yes                | No                                         | Yes                   | Incubator         | Yes, tested in an airtight container          |
| 2826 | Yes                | No                                         | Yes                   | Oven              | Yes, with aluminum seal                       |
| 2897 |                    |                                            |                       |                   |                                               |
| 2901 |                    |                                            |                       |                   |                                               |
| 2925 |                    |                                            |                       |                   |                                               |
| 2976 | No                 | Yes                                        | Yes                   | Oven              | Yes, with aluminum seal                       |
| 3002 | Yes                | Yes,with water                             | Yes                   | Oven              | Yes, tested in an airtight container          |
| 3017 | No                 | Yes                                        | Yes                   |                   | No                                            |
| 3024 | Yes                | Yes, rinsed with purified water            | No                    | Oven              | Yes, sealed with a laboratory watch glass     |
| 3028 | No                 | No                                         | Yes                   | Oven              | Yes, covered with glass plate                 |
| 3122 | No                 | No                                         | Yes                   | Incubator         | Yes, with aluminum seal                       |
| 3134 | No                 | No                                         | Yes                   | Oven              | Yes, aluminium foil and a glass lid was       |
| 3172 | No                 | No                                         | Yes                   | Oven              | Yes, with laboratory grade glass              |
| 3182 |                    |                                            |                       |                   |                                               |
|      |                    |                                            |                       |                   |                                               |

### Sample #23721

| lab  | accr. ISO<br>17025 | sample cleaned prior to the migration step | simulant<br>preheated | Equipment<br>used | Sample sealed during test                                                                                   |
|------|--------------------|--------------------------------------------|-----------------------|-------------------|-------------------------------------------------------------------------------------------------------------|
| 339  |                    |                                            |                       |                   |                                                                                                             |
| 362  |                    |                                            |                       |                   |                                                                                                             |
| 551  |                    |                                            |                       |                   |                                                                                                             |
| 2108 | No                 | Yes, with lint-free cloth                  | Yes                   | Oven              | Yes, with plastic wrap Class beads were<br>added, so that the plate was completely<br>covered with simulant |
| 2115 | Yes                | No                                         | No                    | Incubator         | No                                                                                                          |
| 2132 | Yes                | Yes, with DI water                         | Yes                   | Oven              | Yes, tested in an airtight container                                                                        |
| 2300 | No                 | Yes, with lint free cloth                  | Yes                   | Oven              | Yes, sealed with reflux condense                                                                            |
| 2353 | No                 | No                                         | Yes                   | Oven              | yes, covered by glass                                                                                       |
| 2365 | Yes                | No                                         | Yes                   | Oven              | Yes, cling film                                                                                             |
| 2366 | Yes                | No                                         | Yes                   | Oven              | Yes, tested in an airtight container                                                                        |
| 2384 | Yes                | No                                         | Yes                   | Oven              | Yes, tested in an airtight container                                                                        |
| 2385 | Yes                | No                                         | Yes                   | Oven              | Yes, with a glass-plate                                                                                     |
| 2475 | No                 | No                                         | Yes                   | Oven              | Yes, with aluminum seal                                                                                     |
| 2482 | No                 | Yes, with a lint-free cloth                | Yes                   | Oven              | Yes, with a watch glass                                                                                     |
| 2500 |                    |                                            |                       |                   |                                                                                                             |
| 2510 | Yes                | Yes, rinsed with UPW                       | Yes                   | Hot plate         | Yes, sealed using a plastics autoclave bag                                                                  |
| 2515 | Yes                | No                                         | No                    | Oven              | Yes, tested in an airtight container                                                                        |
| 2553 | Yes                | yes, using a cloth                         | yes                   | Oven              | Yes, tested in an airtight container                                                                        |
| 2797 | Yes                | No                                         | Yes                   | Oven              | Yes, tested in an airtight container                                                                        |
| 2826 | Yes                | No                                         | Yes                   | Oven              | Yes, tested in an airtight container                                                                        |
| 2897 | Yes                | Yes, simple wash with water.               | Yes                   | Oven              | Yes, with a glass cover                                                                                     |
| 2901 | Yes                | No                                         | Yes                   | Oven              | Yes, tested in an airtight container                                                                        |
| 2925 | Yes                | No                                         | Yes                   | Oven              | Yes, with a plastic film                                                                                    |
| 2976 | No                 | Yes                                        | Yes                   | Oven              | Yes, with aluminum seal                                                                                     |
| 3002 | Yes                | Yes, with water                            | Yes                   | Oven              | Yes, tested in an airtight container                                                                        |
| 3017 | No                 | Yes                                        | Yes                   |                   | Yes, tested in an airtight container                                                                        |
| 3024 | Yes                | Yes, rinsed with purified water            | No                    | Oven              | Yes, sealed with a laboratory watch glass                                                                   |
| 3028 |                    |                                            |                       |                   |                                                                                                             |
| 3122 | Yes                | No                                         | Yes                   | Incubator         | Yes, with cristal                                                                                           |
| 3134 |                    |                                            |                       |                   |                                                                                                             |
| 3172 |                    |                                            |                       |                   |                                                                                                             |
| 3182 | Yes                | Yes, with tissue paper                     | Yes                   | Oven              | Yes, with watch glass                                                                                       |
|      |                    |                                            |                       |                   |                                                                                                             |

### **APPENDIX 5**

#### Number of participants per country

3 labs in BRAZIL

1 lab in BULGARIA

1 lab in CROATIA 2 labs in FRANCE

3 labs in GERMANY

1 lab in GREECE

3 labs in HONG KONG

1 lab in INDIA

1 lab in IRELAND

1 lab in ISRAEL

6 labs in ITALY

1 lab in MALAYSIA

3 labs in P.R. of CHINA

1 lab in SPAIN

1 lab in SRI LANKA

1 lab in THAILAND

2 labs in VIETNAM

### **APPENDIX 6**

#### Abbreviations С = final test result after checking of first reported suspect test result D(0.01) = outlier in Dixon's outlier test D(0.05) = straggler in Dixon's outlier test G(0.01) = outlier in Grubbs' outlier test = straggler in Grubbs' outlier test G(0.05) DG(0.01) = outlier in Double Grubbs' outlier test DG(0.05) = straggler in Double Grubbs' outlier test = outlier in Rosner's outlier test R(0.01) R(0.05) = straggler in Rosner's outlier test Е = calculation difference between reported test result and result calculated by iis W = test result withdrawn on request of participant = test result excluded from statistical evaluation ex = not applicable n.a. = not evaluated n.e. = not detected n.d. = first reported fr. f+? = possibly a false positive test result? f-? = possibly a false negative test result?

### Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ISO5725:86
- 3 ISO5725 parts 1-6:94
- 4 ISO13528:05
- 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 9 Analytical Methods Committee, Technical Brief, No 4, January 2001
- 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- 11 W. Horwitz and R. Albert, J. AOAC Int, <u>79.3</u>, 589-621, (1996)
- 12 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, <u>25(2)</u>, 165-172, (1983)
- 13 Commission regulation (EU) No 10/2011 of January 2011 on plastic materials and articles intended to come into contact with food, published in the official journal of the EU on the 15<sup>th</sup> of January 2011
- 14 Union Guidelines on Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food, 21<sup>st</sup> of February 2014, website: ec.europa.eu
- 15 Commission regulation (EU) No 2020/1245 of September 2020 amending and correcting Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food, published in the Official Journal of the European Union, website: op.europa.eu
- 16 Commission regulation (EU) No 2023/1442 of July 2023 amending and correcting Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food, published in the Official Journal of the European Union, website: op.europa.eu
- 17 iis memo 1801: White paper on the determinations of Overall and Specific migration on food contact materials, February 2018, www.iisnl.com